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Gigabit passive optical network (GPON) has evolved into large data provider technique. Analysis of network-generated data 
is critical for efficient fault diagnosis and self-configuration in GPON. Machine learning-based data analytics technologies 
could be significant in analyzing the performance of these kinds of optical networks. So, a machine learning approach for 
estimating the performance of GPON is proposed in this paper. A dataset containing fiber length, transmission power, the 
number of power splitters, line width, and extinction ratio factors has been created in this work to assess the Q factor value 
for a specific optical network. Then, the relief attribute evaluation technique is used to pick fiber length, transmission power, 
and the number of power splitters from among given parameters. For predicting different levels of Q factor, these specific 
parameters are supplied into a regression-based tree classification model. This paper considers logistic regression, 
decision tree, decision table, PART, and random forest algorithms for estimating the performance of GPON. As per the 
simulation findings of the present work, the proposed regression-based tree classification technique gives an effectual 
approximation of the Q factor with the accuracies of 93.8 % and 96.41% for seven-class and three-class cases respectively. 
As a result, the proposed approach appears to be a good fit for accurately estimating the performance of GPON. 
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1. Introduction 
 

The surge in demand for video, IPTV, and video 

conferencing is illustrating the rise in Internet popularity. 

Large bandwidth and consistent long-distance data 

transmission are necessary to fulfil these demands, which 

can be provided via passive optical networks (PON) [1]. 

Generally, a point-to-multipoint network is referred to as a 

PON, which is often a tree topology. PONs are a collection 

of prospective broadband access network technologies 

those give considerable benefits when installed in fiber-to-

the-home (FTTH) circumstances. Their advantages include 

a point-to-multipoint design, high-quality triple-play 

service abilities for data, phone, and video, high-speed 

internet access, and other cost-effective services [2,3]. As 

per the International Telecommunications Union (ITU) 

and the Institute of Electrical and Electronics Engineers 

(IEEE), the major four categories of PONs include ATM 

PON (APON), Broadband PON (BPON), and Gigabit 

PON (GPON) and Ethernet PON (EPON). Among all, 

Gigabit PONs have emerged as one of the leading passive 

optical networks for providing seamless services to 

subscribers [9].  

Like other optical networks, GPONs also convey huge 

volumes of data from a number of sources, such as 

customer behavioural statistics, network traffic traces, 

signal quality indicators and network alarms etc. [3,5]. 

Advanced mathematical approaches are required to extract 

useful information from this data and to make choices 

regarding the proper functioning of networks on the basis 

of the obtained information. Among these tools, machine 

learning (ML) is one of the most promising 

methodological approaches for performing network-data 

analysis and allowing autonomous network self-

configuration and fault management [6]. The significant 

rise in network complexity that optical networks have 

undergone in recent years has motivated the adoption of 

machine learning techniques in optical communication 

networks [7,8]. 

A few examples of the usage of ML techniques in 

these optical networks include the tensor flow-based 

traffic analysis of GPON using various machine learning 

algorithms by Oujezsky et al. [10]. Similarly, Tomasov et 

al. [11] presented a supervised neural network-based 

analysis of messages related to physical layer operations, 

administration and maintenance downstream of GPONs to 

interpret the discrimination among them. Echraibi et al. 

[12] also discussed machine learning-based deep infinite 

mixture models to detect and interpret faults occurring in 

GPONs. In addition, Liu et al. [13] proposed a machine 

learning-based equalization technique for GPONs, which 

made use of k-nearest neighbour (kNN) classifier to 

optimize the equalization performance for expanding the 

bandwidth of GPONs. Moreover, Butt et al. [14] made use 

of machine learning for load balancing and dynamic 
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bandwidth allocation in time and wavelength division 

passive optical networks.  

In continuance of the use of machine learning in the 

domain of optical communication, the current study 

proposes a unique machine learning-based technique for 

estimating the performance of GPONs. To estimate the Q 

factor for a specific GPON, a dataset comprising optical 

network metrics such as fiber length, transmission power, 

the number of power splitters, line width, and extinction 

ratio factors was constructed. Among these network 

metrics, the number of power splitters, fiber length, as well 

as transmission power are determined using the relief 

attribute selection approach. The dataset of these three-

input metrics has been put into a regression-based tree 

classification model to calculate varying Q factor values. 

This research also analyses other machine learning models 

such as logistic regression, decision tree, decision table, 

PART, and random forest algorithms for the required 

purpose. The regression-based tree classification model 

approach provides an effective estimation of Q value for 

7-class and 3-class cases, according to simulation 

outcomes. As a consequence, this method looks to be an 

excellent fit for properly estimating the performance of 

GPONs. 

This paper is divided into several sections. The first 

section introduces passive optical networks, the 

requirement for machine learning in analyzing and 

optimizing the performance of these networks, and the 

suggested technique for this assignment. In part 2, the 

GPON architecture, simulation setup, and parameters are 

addressed. The usage of machine learning algorithms for 

the classification of a given GPON dataset into different Q 

factor classes has been elaborated in the results and 

discussion section, which is section 3 of the present paper. 

Finally, conclusions are drawn from the outcomes of the 

simulation work, which are mentioned in section 4. 

 

 

2. Methods and materials 
 
The suggested GPON architecture, its simulation 

setup, and the production of a dataset for the estimate of Q 

factor for performance prediction are discussed in this 

section. This section also goes over the attribute selection 

criterion for identifying essential input parameters in a 

dataset and classifying them using various machine 

learning methods. The next sub-sections go through each 

of these processes in further detail. 

 

 

2.1. Overview of Gigabit passive optical  

       network (GPON) 

 

ITU-T has standardized GPON (Gigabit Capability 

Passive Optical Network) with Recommendation G.984.1, 

2, 3, 4, and 5 [9]. Voice, TDM (Time Division Multiplex), 

Ethernet, ATM (Asynchrony Transport Mode), shared 

line, wireless extension, and other services are all 

supported by GPON. Furthermore, GPON offers 

symmetrical 622 Mbit/s downstream and symmetrical 1.25 

Gbit/s upstream, both of which employ the same protocols. 

As a result, GPON is a technology that is well-suited to 

triple-play services [9]. 

The FTTH (Fiber to the Home) network architecture 

is one of the most widespread GPON network topologies. 

Asymmetric and symmetric broadband services, POTS 

(Plain Old Telephone Service) and ISDN (Integrated 

Service Digital Network), as well as narrowband services 

such as phone lines, are all examples of this type of 

design. The most popular downstream and upstream 

speeds in GPON are 2.4Gbit/s and 1.2Gbit/s [15]. 

The GPON network can be divided into five sections. 

The aggregation switch is the first component, and it is 

responsible for receiving traffic from the uplink transport 

section while filtering out superfluous traffic [17]. Part 2 

talks about OLT, which is a crucial part of GPON. It can 

be considered the "brain" of a GPON network. Traffic 

scheduling, buffer control, and bandwidth allocation are 

the three most significant activities performed by OLT 

[16]. The optical distribution network is the third part. It is 

a traditional optical network with a few extra splitters. 

PON tree network architecture is used in GPON since it is 

a sort of PON network. The following is the design of this 

architecture: one optical fiber is connected to a GPON port 

(OLT), and all users are connected to it. GPON classes A, 

B, B+, C, and C+ are used to define ODN (Optical 

Distribution Network). The most common today is class 

B+, which permits a signal to be split up to 64 times for 64 

users across a distance of up to 20 kilometers [15]. Part 4 

is a GPON network's distant end (ONU – Optical Network 

Unit), and as stated in the text above, the number of 

GPON endpoints varies depending on which classes are 

employed; in the case of B+, the number is 64. Each 

GPON end can have several ports (UNI – User-Network 

Interface); in the case of GPON, the ONU is referred to as 

an ONT. The user equipment is represented in Part 5. It 

might be a traditional phone, a PC, or a Setup Box for 

residential customers. The chapter will demonstrate how 

SNI (Service Network Interface) can be used to connect to 

an ONU/ONT (Optical Network Terminal) [16,18]. 

A diagram of GPON architecture and features can be 

found in Fig. 1. Its capabilities are comparable to those of 

BPON and EPON schemes. GPON architecture, on the 

other hand, has an advantage over BPON and EPON 

designs. This benefit might be attributed to the fact that the 

GPON operational scheme is more customer-centric in 

design [19]. 
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Fig. 1. GPON architecture [9] 

 

 

The capabilities of GPON are similar to those of 

BPON and EPON schemes. GPON architecture, on the 

other hand, has an advantage over BPON and EPON 

designs. This benefit might be attributed to the fact that the 

GPON operational scheme is more customer-centric [9]. 

The G.984 [9] was certified by the ITU-T in March 2003. 

The GPON structure, desired bit rates, optical power 

splitting ratios, types of services to be performed, 

information security, and signal transfer delays are all 

covered in this recommendation [9]. Some requirements of 

the BPON G.983 guidelines are maintained by G.984 in 

order for the GPON model to be compatible with the 

BPON model. 

 

 

2.2. GPON simulations 

 

Fig. 1 depicts the simulation setup that is used to 

analyze the system’s performance in both downstream and 

upstream traffic. The performance of a certain GPON 

architecture is examined using the Optisystem 13.0 

software in this study [20]. The downstream and upstream 

data are sent at wavelengths of 1490 nm and 1500 nm, 

respectively. The CW laser, non-return-to-zero (NRZ), 

return-to-zero (RZ), optical circulator, single optical fiber, 

Erbium-Doped Fiber Amplifier (EDFA), and bit error rate 

(BER) analyzer are among the components utilized in this 

configuration. Table 1 shows the total parametric values 

changed in the optical simulation setup based on 

conventional network values. Downstream traffic is sent 

across an optical fiber with a wavelength of 1490 nm, a 

length of 0 to 50 kilometers, the transmission power of -5 

to 5 dBm, and power splitter with split ratios of 8, 16, 32, 

64, 128.  

 
Table 1. Parameters and its ranges 

Parameter  Value 

Fiber length  0 to 50 km 

Frequency 1490 nm 

Transmission power -5 to 5 dBm 

Power splitter 8,16,32,64,128 

Line width 10 MHz 

Extinction Ratio 15db 

Attenuation 0.25 dB/km 

 

2.3. GPON simulation dataset 

 

Five primary network metrics were taken into account 

in this study: fiber length, transmission power, extinction 

ratio, line width, and power splitters, in order to generate a 

dataset for examining the performance of GPON in terms 

of Q value estimates. Downstream traffic is carried by an 

optical fiber with a length of 0 to 50 kilometers and a 

wavelength of 1550 nm. Extinction Ratio of 15dB to 16 

dB, line width of 10MHz, and transmission power of -5 to 

5 dBm are the other numbers. Because the current model 

assumes a total of 128, the power splitters taken into 

account have values of 8,16,32,64, and 128. Q factor 

estimations were produced using various combinations of 

values for these input parameters. As a result, a dataset of 

23000 data samples was created. Table 2 shows some of 

these data samples. 

 
Table 2. Dataset of GPON 

Fiber 

Length 

Transmission 

Power  

Line 

Width 

ER Power 

Splitters 

Q 

Factor  

46 -4.16667 15.1856 10 8 0 

31.5 0.208333 15.1258 10 64 1.51 

20 -1.875 15.0784 10 64 1.76 

50 4.79167 15.2021 10 64 2.01 

40.5 3.75 15.1629 10 64 3.01 

29.5 -3.75 15.1175 10 8 5.13 

25 -0.83333 15.099 10 16 6.92 

18.5 4.16667 15.0722 10 64 7.02 

10.5 -4.16667 15.0392 10 8 12.7 

22.5 1.66667 15.0887 10 16 12.9 

8.5 5 15.0309 10 64 16.9 

20 1.875 15.0784 10 16 19.0 

22 3.95833 15.0866 10 16 23.9 

14 1.875 15.0536 10 16 25.6 

5.5 -0.41667 15.0186 10 8 38.9 

8 0.833333 15.0289 10 8 50.2 

10 3.125 15.0371 10 8 67.9 

12 3.95833 15.0454 10 8 73.7 

10.5 4.375 15.0392 10 8 85.3 

9.5 3.54167 15.0351 10 8 89.4 

6.5 3.95833 15.0227 10 8 91.3 

4.5 3.75 15.0144 10 8 95.68 

10.5 4.79167 15.0392 10 8 100.65 

6.5 4.58333 15.0227 10 8 112.94 

5 4.58333 15.0165 10 8 127.42 

5.5 4.375 15.0186 10 8 132.65 

6 5 15.0206 10 8 142.04 

1.5 5 15.0021 10 8 151.47 

1 5 15 10 8 160.73 
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The input dataset must be categorized by distinct 

classes in order to use machine learning-based 
classification techniques. In this dataset, the values of the 
Q factor are used as output class labels, which are further 
separated into two types. The Q factor values in the first 
set are divided into seven classes, whereas the Q factor 
values in the second set are divided into three classes. 
Table 3 shows the categorization information for seven 
classes, whereas Table 4 shows the categorization 
information for three classes. 

 
Table 3. Seven class classification of Q factor 

 

Q Factor Range Output Class 

0 to 9 Zero 

10 to 19 Ten 

20 to 29 Twenty 

30 to 39 Thirty 

40 to 49 Forty 

50 to 59 Fifty 

60 and above Sixty 

 

Table 4. Three class classification of Q factor 

 

Q Factor Range Class 

0 to 6 Non-satisfactory  

7 to 13 Satisfactory 

13 and above Effective  

 
 
2.4. Selection of significant parameters  
 

The attribute evaluator is a mechanism for evaluating 
each attribute in a dataset in terms of the output classes. 
There will be some attributes in a database with a big 
number of attributes that do not become significant in the 
analysis you are now seeking [21]. As a result, discarding 
undesirable attributes from the dataset would become a 
critical step in establishing a better machine learning 
model. The current work employs the Relief Attribute 
Evaluation approach to accomplish this goal [22]. It 
calculates the value of an attribute by sampling an instance 
multiple times and comparing the value of the supplied 
attribute for the closest instances of the same class as well 
as other classes. The reason for employing this approach is 
that it is an efficient method having good perception of 
contextual information of given data. Moreover, it also has 
ability to precisely estimate the quality of features in cases 
having strong dependencies among features [22]. As 
shown in Table 5, the Relief attribute evaluation model 
evaluates the given input features of the given GPON 
dataset on a scale of 0 to 1 in this study. 

 
Table 5. Ranking of input parameters for GPON using  

Relief attribute evaluation technique 

 

Rank  Input Parameter Rank Value 

1 Power Splitter 0.3 

2 Transmission 

Power 

0.26 

3 Fiber Length 0.1 

4 Extinction Ratio 0.04 

5 Line Width 0.01 

It is clear from this table that this attribute assessment 

method gives the highest priority to the power splitter, 

followed by transmission power and fiber length. 

Extinction ratio and line width, on the other hand, are 

ranked at 4 and 5, respectively, with marginal values of 

their ranks, resulting in their elimination. As a result of 

this technique, the most essential input variables for 

estimating the performance of BGPON in regards to Q 

factor estimates are the power splitter, transmission power, 

and fiber length. 

 

2.5. Classification  

 

The present work makes use of Weka software tool 

package for the classification of different Q factor classes 

using various machine learning (ML) classifiers [23]. 

Various ML classifiers utilized in this work include 

regression tree-based classification model (also known as 

classification via regression) (M5P) [24, 25], decision tree 

(J48) [26], logistic regression [27], decision table [28], 

PART [29], and random forest [30] algorithms. In the 

current work, the supplied GPON dataset has been 

partitioned into training and testing sets for this objective, 

with 90% samples for training and 10% samples for 

testing the machine learning algorithms. 

 

 

3. Results analysis and discussions 
 

The simulation results of several ML classifiers on 

specified GPON datasets are described in this section. It 

also includes an evaluation of the findings in order to 

develop conclusions regarding the most appropriate 

classifiers for estimating GPON performance. As 

previously stated, the current study uses six machine 

learning classifiers to perform the task of classifying 

different Q factor classes in a specified GPON dataset. 

Logistic regression (LR), decision tree (J48), classification 

by regression (M5P), decision table, PART, and random 

forest are among the classifiers available. This 

classification assignment is carried out in two stages. The 

classification has been carried out in the first phase 

utilizing specified classifiers for seven distinct classes of Q 

factor, i.e., Q factor values of 0, 10, 20, 30, 40, 50, and 60. 

This technique is also repeated in the second phase for a 

three-class situation with three classes of Q factor, namely, 

non-satisfactory, satisfactory, and effective. To implement 

classification in both phases using given ML classifiers, 

10-fold cross validation approach has been taken into 

consideration for generalized classification. Various 

performance measures, including accuracy, precision, 

recall, an area under the curve (AUC), and F-measures, 

have been used to assess the classification efficiency of 

these classifiers. 

 

3.1. Analysis of results for seven class classification  

       of Q factor estimates 

 

Table 6 depicts the classification performance of 

various ML classifiers in terms of accuracy, precision, 
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recall, AUC, and F measure for estimating three different 

Q factor classes of given GPON. With the exception of the 

logistic regression model, all ML classifiers offer good 

results with accuracy values above 90%. In the table 

following short names have been used for the classifiers, 

L.R: Logistic Regression, D.T: Decision Tree (J48), 

R.T.C: Regression-Tree Classification, D.T: Decision 

Table, R.F: Random Forest, P: PART. 
 

 

Table 6.  Performance evaluation of GPON using different ML classifiers for seven-class classification  

of Q factor estimates 

 

Performance 

Measures 

L.R D.T (J48) R T C 

(M5P)  

D.T P R.F 

Accuracy (%) 78.92 93.05 93.8 90.75 92.93 93.3 

Precision (%) 75.4 93.0 93.7 90.5 92.9 93.3 

Recall (%) 78.9 93.1 93.8 90.8 92.9 93.3 

AUC (%)  90.1 98.6 99.7 97.9 98.5 

 

99.2 

F-Measure 76.4 93.0 93.7 90.6 92.9 93.3 

 

According to this table, the regression tree 

classification model (M5P) model has the highest accuracy 

value of 93.8%, preceded by random forest, decision tree, 

PART, decision table, and logistic regression, which have 

accuracies of 93.3%, 92.05%, 92.93%, 90.75%, and 

78.92% respectively. So, a logistic regression classifier 

with a minimum value of accuracy is not suited for 

accurate classification of Q factor levels. In addition, the 

M5P classifier offers 93.7% precision, 93.8% recall, 

99.7% AUC, and 93.7% F measure values, which are 

maximum among other classifiers, thereby making it a 

suitable option for the given task of estimating the 

performance of GPON. 

The performance of the regression tree-based 

classification (M5P) model has also been evaluated by 

looking at the precision, recall, AUC, and F measure 

values for each of the seven Q factor classes of GPON 

individually, as shown in Fig. 2. M5P model yields 

precision ranging from 53.7% for the 'Fifty' class of Q 

factor estimate to a maximum of 98.7% for the 'Zero' class 

of Q factor estimation, as illustrated in this figure. The 

proposed classifier has a minimum recall of 30.9% for the 

'Fifty' class and a maximum recall of 98.7% for the 'Zero' 

class of Q factor. Furthermore, it specifies the minimum 

AUC of 99% for class 'Twenty' and a maximum AUC of 

nearly 100% for class 'Sixty'. This classifier, too, has a 

minimum F measure of 39.7% for class 'Fifty' and a 

maximum F measure of 98.7% for class 'Zero'. The greater 

value of AUC across all Q factor classes, as seen in this 

figure, demonstrates the effectiveness of the suggested 

classification model. 

 

 

Fig. 2.  Performance of regression-tree based classification model in terms of precision, recall, AUC and F  

measures for seven classes of Q factor (color online) 
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3.2. Analysis of results for three-class  

       classification of Q factor estimates 

 

Similarly, the performance of several ML models has 

been assessed for three Q factor classes: non-satisfactory, 

satisfactory, and effective. As stated in Table 7, the 

outcomes of the given classifiers were assessed in terms of 

average values of several performance metrics. With a 

maximum accuracy of 96.41%, regression-based tree 

classification model (M5P) performs better than all other 

classifiers, as seen in this table. PART, decision tree, 

random forest, and decision table models possess 

accuracies of 95.92%, 95.9%, 95.76%, and 92.2% 

respectively. Logistic regression offers a minimal accuracy 

of 71.4% in this situation of three-class categorization, 

making it inappropriate for precise estimation of BPON 

functionality. Moreover, among other machine learning 

models, the M5P model achieves maximum average 

precision of 96.4%, maximum recall of 96.4%, maximum 

AUC of 99.7%, and maximum F measure of 96.4%, 

making it a suitable choice for performance estimation of 

Gigabit passive optical networks. Fig. 3 displays the 

performance of the proposed M5P model in terms of 

accuracy, recall, AUC, and F measure values of three 

classes of Q factor independently.  

 

 
Table 7.  Performance evaluation of GPON using  

different ML classifiers for three-class classification  

of Q factor estimates 

 

Performance 

Measures  

L.R D.T 

(J48) 

R T C 

(M5P)  

D.T P R.F 

Accuracy 

(%) 

71.40 95.9 96.41 92.72 95.92 95.76 

Precision 

(%) 

73.0 96.0 96.4 92.6 95.9 95.8 

Recall (%) 71.4 96.0 96.4 92.7 95.9 95.8 

AUC (%)  85.0 98.9 99.7 98.4 99.3 99.4 

F measure 

(%) 

64.9 96.0 96.4 92.6 95.9 95.8 

 
Fig. 3. Performance of regression-tree based classification model in terms of precision, recall, AUC and F measures 

 for three classes of Q factor (color online) 
 

 

M5P model has a precision of 98.4% for the ‘Non-

satisfactory’ class, 96.5% for the 'Effective' class, and 

89.3% for the 'Satisfactory' class, according to this graph. 

In the instance of recall, the suggested ML model offers a 

maximum average value of 98.4% for the ‘Non-

satisfactory’ class, followed by 96.4% and 89.2% for the 

'Effective’ and 'Satisfactory' classifications respectively. 

Furthermore, for the 'Effective' and 'Non-satisfactory' 

classes, this classifier provides a maximum AUC of 

99.9%, 99.8% and 99.1% for the and 'Non-satisfactory' , 

'Effective' and ‘Satisfactory’ classes of Q factor for GPON 

performance estimation. This classifier, too, has a 

maximum F measure of 98.4% for 'Non-satisfactory,' 

96.4% for 'Effective,' and 89.3% for 'Satisfactory' Q factor 

classes. As a result of this debate, it is evident that the 

suggested model is capable of identifying all three classes 

of Q factor accurately. 

As a whole, the simulation results of various 

classification techniques in terms of the different 

performance metrics for three-class and seven-class 

classification of the Q factor clearly show that the 

proposed regression-based tree classification model (M5P) 

is a promising strategy for reliable and accurate estimation 

of the performance of Gigabit passive optical networks. 

 

 

4.  Conclusion  
 

This research employs a machine learning approach to 

estimate the performance of broadband passive optical 
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networks. To create an accurate prediction of Q factor, this 

method uses a dataset of essential network statistics. Fiber 

length, transmission power, and power splitters are among 

the network parameters identified utilizing the Relief 

attribute evaluation method for this study. Following that, 

the input samples of these attributes annotated with a 

certain Q factor class are supplied to various Machine 

learning models, such as logistic regression, decision tree, 

decision table, random forest, and PART. When these 

classifiers are compared on the basis of different 

performance metrics, it is clear that the regression-based 

tree classification model delivers the highest accuracy of 

93.8% and 96.41 for seven-class and three-class Q factor 

estimation cases, respectively. As a result, it is concluded 

that the suggested regression-based tree classification 

model with selected significant network parameters is an 

efficient approach for reliably estimating the performance 

of GPONs in terms of Q factor values. 
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